Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672457

RESUMO

Mitochondria, the energy hubs of the cell, are progressively becoming attractive targets in the search for potent therapeutics against neurodegenerative diseases. The pivotal role of mitochondrial dysfunction in the pathogenesis of various diseases, including Parkinson's disease (PD), underscores the urgency of discovering novel therapeutic strategies. Given the limitations associated with available treatments for mitochondrial dysfunction-associated diseases, the search for new potent alternatives has become imperative. In this report, we embarked on an extensive screening of 4224 fractions from 384 Australian marine organisms and plant samples to identify natural products with protective effects on mitochondria. Our initial screening using PD patient-sourced olfactory neurosphere-derived (hONS) cells with rotenone as a mitochondria stressor resulted in 108 promising fractions from 11 different biota. To further assess the potency and efficacy of these hits, the 11 biotas were subjected to a subsequent round of screening on human neuroblastoma (SH-SY5Y) cells, using 6-hydroxydopamine to induce mitochondrial stress, complemented by a mitochondrial membrane potential assay. This rigorous process yielded 35 active fractions from eight biotas. Advanced analysis using an orbit trap mass spectrophotometer facilitated the identification of the molecular constituents of the most active fraction from each of the eight biotas. This meticulous approach led to the discovery of 57 unique compounds, among which 12 were previously recognized for their mitoprotective effects. Our findings highlight the vast potential of natural products derived from Australian marine organisms and plants in the quest for innovative treatments targeting mitochondrial dysfunction in neurodegenerative diseases.


Assuntos
Produtos Biológicos , Ensaios de Triagem em Larga Escala , Mitocôndrias , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Rotenona/farmacologia , Organismos Aquáticos/química
2.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675592

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Assuntos
Sobrevivência Celular , Dopamina , Extrato de Sementes de Uva , Nanopartículas , Doença de Parkinson , Rotenona , alfa-Sinucleína , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/química , Dopamina/metabolismo , Nanopartículas/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/farmacologia , Rotenona/farmacologia , Linhagem Celular Tumoral , alfa-Sinucleína/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Tamanho da Partícula , Lipossomos/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
3.
PLoS One ; 19(4): e0292415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669260

RESUMO

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.


Assuntos
Trifosfato de Adenosina , Caenorhabditis elegans , Oxirredução , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Imagem Óptica/métodos , Paralisia/induzido quimicamente , Paralisia/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Rotenona/farmacologia , Anestésicos/farmacologia
4.
J Nat Prod ; 87(4): 1003-1012, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579352

RESUMO

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Assuntos
Antivirais , Isoflavonas , Millettia , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/isolamento & purificação , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Millettia/química , Estrutura Molecular , Humanos , Rotenona/farmacologia , Rotenona/química , Rotenona/análogos & derivados , Folhas de Planta/química , Raízes de Plantas/química , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos
5.
Eur J Pharmacol ; 970: 176482, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452835

RESUMO

Rotenone, a plant-based agricultural insecticide, has been shown to have anti-tumor activity through targeting mitochondrial complex I in cancer cells. However, off-target toxic side effect on nervous systems have greatly restricted the application of rotenone as anticancer drugs. Here, a folic acid-rotenol (FA-rotenol) conjugate was prepared by covalent coupling of the tumor-targeting ligand folic acid with rotenone derivative-rotenol to enhance its accumulation at tumor site. FA-rotenol conjugates present high in vitro cytotoxicties against several cell lines by inducing mitochondrial membrane potential depolarization and increasing the level of intracellular reactive oxygen species (ROS) to activate the mitochondrial pathway of apoptosis and enhance the G2/M cell cycle arrest. Because of the high affinity with over-expressed folate receptors, FA-rotenol conjugate demonstrated more effective in vivo therapeutic outcomes in 4T1 tumor-bearing mice than rotenone and rotenol. In addition, FA-rotenol conjugate can markedly inhibit the cell migration and invasion of HepG-2 cells. These studies confirm the feasibility of tumor-targeted ligand conjugated rotenone derivatives for targeted antitumor therapy; likewise, they lay the foundations for the development of other rotenol-conjugates with antitumor potential.


Assuntos
Antineoplásicos , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Ligantes , Rotenona/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
6.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474335

RESUMO

Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis.


Assuntos
Ferroptose , Rotenona , Ratos , Animais , Rotenona/farmacologia , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ferro/metabolismo
7.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474469

RESUMO

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Assuntos
Curcumina/análogos & derivados , Doenças Mitocondriais , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , RNA Mensageiro/genética
8.
Int J Biol Macromol ; 263(Pt 1): 130219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367785

RESUMO

Dysfunctional mitophagy contributes to Parkinson's disease (PD) by affecting dopamine-producing neurons. Mutations in parkin and pink1 genes, linked to familial PD, impede the removal of damaged mitochondria. Previous studies suggested Rab11's involvement in mitophagy alongside Parkin and Pink1. Additionally, mitochondria-endoplasmic reticulum contact sites (MERCS) regulate cellular functions, including mitochondrial quality control and calcium regulation. Our study explored whether activating mitophagy triggers the unfolded protein response and ER stress pathway in SH-SY5Y human cells. We induced a PD-like state by exposing undifferentiated SH-SY5Y cells to rotenone, an established PD-inducing agent. This led to reduced Rab11 and PERK- expression while increasing ATP5a, a mitochondrial marker, when Rab11 was overexpressed. Our findings suggest that enhancing endosomal trafficking can mitigate ER stress by regulating mitochondria, rescuing cells from apoptosis. Furthermore, we assessed the therapeutic potential of Rab11, both alone and in combination with L-Dopa, in a Drosophila PD model. In summary, our research underscores the role of mitophagy dysfunction in PD pathogenesis, highlighting Rab11's importance in alleviating ER stress and preserving mitochondrial function. It also provides insights into potential PD management strategies, including the synergistic use of Rab11 and L-Dopa.


Assuntos
Proteínas de Drosophila , Neuroblastoma , Doença de Parkinson , Animais , Humanos , Levodopa , Rotenona/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Drosophila/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
9.
PLoS One ; 19(2): e0296297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349932

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases worldwide. Currently applied therapeutic protocols are limited to improve the motor functions of patients. Therefore, seeking alternative regimes with better therapeutic impact is crucial. This study aims to validate the therapeutic impact of mesenchymal stem cell injection using two delivery methods, intracranial administration and intravenous administration, on rotenone (ROT)-induced PD model in rats. Our work included behavioral, biochemical, histological, and molecular investigations. Open field test (OFT) and rotarod tests were applied. Important oxidative stress, antioxidant and proinflammatory markers were monitored. Substantia Nigra and Striatum tissues were examined histologically and the molecular expression of DOPA decarboxylase, Tyrosine hydroxylase, and α-synuclein in neurons in these tissues were investigated. Our results showed that MSC grafting improved motor and memory impairments and oxidative stress status that were observed after ROT administration. Additionally, BM-MSCs application restored SOD and CAT activities and the levels of DA, L-Dopa, IL6, IL1ß, and TNFα. Moreover, MSC grafting overwhelmed the pathological changes induced by ROT and normalized the expression of Tyrosine hydroxylase, DOPA decarboxylase, and α-synuclein towards the control values in the Nigral and Striatal tissues of male rats. Conclusively, both administration routes improved motor function, protection of the nigrostriatal system, and improved striatal dopamine release. The observed beneficial effect of applying MSCs suggests potential benefits in clinical applications. No significant differences in the outcomes of the treatment would favor a certain way of MSC application over the other. However, the intravenous delivery method seems to be safer and more feasible compared to the intrastriatal method.


Assuntos
Células-Tronco Mesenquimais , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Ratos , Masculino , Animais , alfa-Sinucleína/metabolismo , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Rotenona/farmacologia , Dopa Descarboxilase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Administração Intravenosa , Modelos Animais de Doenças
10.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285066

RESUMO

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Assuntos
Inibidores da Angiogênese , Peixe-Zebra , Animais , Humanos , Inibidores da Angiogênese/toxicidade , Inibidores da Angiogênese/metabolismo , Angiogênese , Metotrexato/toxicidade , Rotenona/farmacologia , Embrião não Mamífero , Metabolômica
11.
Behav Brain Res ; 462: 114861, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38216060

RESUMO

The objective of this study was to investigate the effects of exposure to rotenone, sleep deprivation, and the epidermal growth factor receptor (EGFR) inhibitor on the locomotor activity of zebrafish larvae. Observations were conducted on control groups, sleep-deprived groups without interventions, groups treated with rotenone or the EGFR inhibitor alone, and also groups with combined exposures. The results showed that sleep deprivation alone led to a decrease of speed of the locomotor activity compared to the control groups. The treatment with rotenone alone resulted in varied effects on the locomotor activity. However, a combined exposure to rotenone and sleep deprivation further reduced the locomotor activity compared to the control and rotenone-treated groups. The groups treated with the EGFR inhibitor alone exhibited variable effects on the locomotor activity. Furthermore, the combined exposure to the EGFR inhibitor and sleep deprivation resulted in diverse changes in the locomotor activity. However, the combined treatment with rotenone and the EGFR inhibitor produced complex alterations in the locomotor activity. These findings demonstrate the distinct effects of exposure to rotenone, sleep deprivation, and the EGFR inhibitor on the locomotor activity of zebrafish larvae. The interaction between these factors further modulates locomotor activity, suggesting a potential interplay between the EGFR system, sleep regulation, and the dopaminergic system. Understanding the relationship between the EGFR system, sleep regulation, and neurological regulation may contribute to the development of therapeutic strategies to address such issues as sleep disorders and neurodegenerative conditions.


Assuntos
Rotenona , Privação do Sono , Animais , Privação do Sono/metabolismo , Rotenona/farmacologia , Peixe-Zebra/fisiologia , Sono/fisiologia , Receptores ErbB/metabolismo
12.
ChemistryOpen ; 13(1): e202300087, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590423

RESUMO

Rotenone is a naturally occurring compound shown to exhibit antiproliferative activity against various cancer cell lines, indicating its potential as a lead anticancer agent. However, its toxicity against normal cells has prompted further investigation and chemical modifications. In this study, a library of carbonyl group-modified rotenone derivatives was synthesized and evaluated for their antiproliferative activities against MCF-7 breast cancer cells, A549 human lung carcinoma cells, and HCT116 human colorectal cancer cells using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed several promising compounds that inhibited cell proliferation. Specifically, the oxime and alcohol rotenone derivatives exhibited antiproliferative activities against all 3 cancer cell lines, while the ethoxy, carbamate, and alkene derivatives are selective against MCF-7 (IC50 =5.72 µM), HCT116 (IC50 =8.86 µM), and A549 (IC50 =0.11 µM), respectively. SwissADME analysis showed that the physicochemical properties and drug-likeness of the synthesized rotenone derivatives were within the set limits, suggesting the favorable characteristics of these compounds for drug development. The findings obtained in this work highlight the potential of rotenone derivatives as promising chemotherapeutic candidates.


Assuntos
Antineoplásicos , Rotenona , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Rotenona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Células MCF-7
13.
Inflammopharmacology ; 32(1): 777-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038781

RESUMO

Parkinson's disease is a neuroprogressive disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta. Empagliflozin (EMPA), a SGLT-2 inhibitor, is an oral hypoglycemic agent with reported anti-inflammatory and antioxidant effects. The current study aimed to evaluate the neuroprotective effect of EMPA in rotenone-induced Parkinson's disease. Rats were randomly distributed among five groups as follows: control, rotenone (2 mg/kg), rotenone + EMPA (10 mg/kg), rotenone + EMPA (20 mg/kg), and EMPA (20 mg/kg) groups. They were treated for 30 consecutive days. Rotenone reduced locomotor activity and retention time on the rotarod performance test while elongated descent latency time. On the other side, EMPA corrected these behavioral changes. These results were confirmed by histological examination and number of intact neurons. Moreover, rotenone induced alpha-synuclein accumulation, reduced tyrosine hydroxylase expression, dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid concentrations. On the other side, EMPA reversed such effects induced by rotenone. Depending on previous results, EMPA (20 mg/kg) was selected for further mechanistic studies. Rotenone ameliorated superoxide dismutase and catalase activities and enhanced lipid peroxidation, interleukin-1ß, and tumor necrosis factor-α levels. By contrast, EMPA opposed rotenone-induced effects on oxidative stress and inflammation. Besides, rotenone reduced the expression of pAMP-activated protein kinase (pAMPK), peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), and Sirtuin-1 (SIRT-1), as well as abrogated NAD+/NADH ratio. However, EMPA activated the AMPK/SIRT-1/PGC-1α pathway. Moreover, rotenone hindered the wnt/ß-catenin pathway by reducing the wnt-3a level and ß-catenin expression. On the other side, EMPA triggered activation of the wnt/ß-catenin pathway. Collectively, EMPA may provide a promising solution for Parkinson's patients worldwide.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Doença de Parkinson , Animais , Humanos , Ratos , Proteínas Quinases Ativadas por AMP , Compostos Benzidrílicos/uso terapêutico , beta Catenina , Neurônios Dopaminérgicos , Glucosídeos/uso terapêutico , Doenças Neuroinflamatórias , Estresse Oxidativo , Rotenona/farmacologia
14.
Acta Pharmacol Sin ; 45(3): 480-489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993535

RESUMO

Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 µM and 6.159 µM, respectively. K-ATP channel blockers glibenclamide (50 µM) or 5-hydroxydecanoate (5-HD, 250 µM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 µM) than glibenclamide (KD = 24.32 µM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.


Assuntos
Flavanonas , Neuroblastoma , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Ratos , Animais , Canais KATP , Rotenona/farmacologia , Receptores de Sulfonilureias , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Glibureto/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Neurônios Dopaminérgicos/metabolismo , Trifosfato de Adenosina/farmacologia
15.
Neurosci Lett ; 818: 137575, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040406

RESUMO

Parkinson's disease (PD) is the second most common and progressive neurodegenerative disease. This experimental study was designed to investigate the neuroprotective effects of dexpanthenol on antioxidant and anti-inflammatory processes in a rotenone-induced Parkinson's disease model in rats. Twenty-one male rats were randomly divided into 2 groups. The rotenone group (n = 14) was administered rotenone by intrastriatal injection, and the vehicle group (n = 7) was administered DMSO with the same application route. All animals underwent rotational movement testing with apomorphine injection 10 days later. Those with Parkinson's disease model were randomly divided into 2 groups. While 1 ml/kg of saline was applied to the saline group (n = 7), 500 mg/kg was administered to the dexpanthenol group intraperitoneally for 28 days. After 28 days, all rats were euthanized and brain tissue was removed. While striatal areas were evaluated immunohistochemically, brain MDA, TNF-α, and HVA levels were measured to evaluate their anti-oxidative and anti-inflammatory effects. In the dexpanthenol group, the total count (p < 0.001) and intensity (p < 0.001) of dopaminergic neurons in the striatal areas increased compared to the saline group. It was revealed that MDA (nmol/g) (p < 0.001) and TNF-α (pg/g) (p < 0.001) levels decreased in the dexpanthenol group, while HVA (ng/mg) levels increased (p < 0.01). This study suggests that dexpanthenol may have a neuroprotective effect by reducing neuronal loss, oxidative damage, and neuroinflammation in the striatum in rats.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Rotenona/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
16.
Sci Rep ; 13(1): 20385, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989867

RESUMO

Oxyresveratrol has been documented benefits for neurodegenerative disease. However, the specific molecular mechanisms and pathways involved is currently limited. This study aimed to investigate the potential neuroprotective mechanisms of oxyresveratrol using rotenone-induced human neuroblastoma SH-SY5Y cytotoxicity. Cells were divided into the following groups: control, rotenone, and oxyresveratrol pre-treated before being exposed to rotenone. Cellular assays were performed to investigate neuroprotective effects of oxyresveratrol. The results showed that 20 µM oxyresveratrol was effective in preventing rotenone-induced cell death and decreasing ROS levels in the cells. The alteration of metabolites and pathways involved in the neuroprotective activities of oxyresveratrol were further investigated using LC-QTOF-MS/MS untargeted metabolomics approach. We hypothesized that oxyresveratrol's neuroprotective effects would be associated with neurodegenerative pathways. A total of 294 metabolites were identified. 7,8-dihydrobiopterin exhibited the highest VIP scores (VIP > 3.0; p < 0.05), thus considered a biomarker in this study. Our results demonstrated that pretreatment with oxyresveratrol upregulated the level of 7,8-dihydrobiopterin compared to the positive control. Pathway analysis verified that 7,8-dihydrobiopterin was primarily associated with phenylalanine, tyrosine, and tryptophan metabolism (impact = 1, p < 0.001), serving as essential cofactors for enzymatic function in the dopamine biosynthesis pathway. In conclusion, oxyresveratrol may be benefit for the prevention of neurodegenerative diseases by increasing 7,8-dihydrobiopterin concentration.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Rotenona/farmacologia , Fármacos Neuroprotetores/farmacologia , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Apoptose
17.
Sci Rep ; 13(1): 19942, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968340

RESUMO

The present study hypothesises that the selective brain ß2 receptor activation through ß2-adrenoreceptor agonist (ß2ARA), Formoterol (FMT), suppresses SNCA gene expression, a pathological hallmark of Parkinson's disease (PD) in brain. Further, it is also hypothesized that brain targeted delivery of Formoterol via polysorbate-80 surface modified solid lipid nanoparticles of Formoterol (FMT-SLNs-PS80) can improve its stability, therapeutic efficacy and avoid/reduce peripheral off-target side effects. FMT-SLNs-PS80 was prepared by solvent injection method, the formulation was optimized by using Box-Behnken design and characterized by measuring drug content, entrapment efficacy, particle size, zeta potentials and poly dispersibility. The FMT-SLNs-PS80, significantly decreases the SNCA expression, mitochondrial membrane damage and rotenone induced changes in oxidative (SOD, CAT, GSH and ROS) stress markers in SH-SY5Y cell lines. The ex vivo permeation study of the formulation using everted chicken ileum exhibited a steady state flux. The pharmacokinetic and tissue distribution studies of the formulation in rats showed a significant improvement in the kinetic parameters when compared to naïve FMT, further the formulation also improved the brain bioavailability of FMT. The anti-Parkinson's efficacy studies of the formulation in mice showed a significant neuroprotection against rotenone-induced changes in behavioural and biochemical parameters. Further, the histopathological analysis of mice brain confirms a significant neuroprotective benefit. The present study successfully establishes the brain targeted delivery and anti-Parkinson's therapeutic efficacy of FMT-SLNs-PS80.


Assuntos
Nanopartículas , Neuroblastoma , Doença de Parkinson , Ratos , Camundongos , Humanos , Animais , Polissorbatos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Rotenona/farmacologia , Lipídeos/química , alfa-Sinucleína/farmacologia , Nanopartículas/química , Estresse Oxidativo , Expressão Gênica , Tamanho da Partícula , Portadores de Fármacos/química
18.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894708

RESUMO

This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer-Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.


Assuntos
Lipossomos , Rotenona , Rotenona/farmacologia , Mitocôndrias , Linhagem Celular , Fosfatidilcolinas , Tensoativos
19.
Life Sci ; 333: 122144, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797687

RESUMO

AIM: The present study aims to identify selective estrogen receptor beta (ERß) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS: In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS: Cianidanol was identified as a selective ERß agonist through virtual screening. The cianidanol-ERß complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 µM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 µM) increases the expression of ERß, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 µM) were reversed in the presence of a selective ERß antagonist. In this study, we found that selective activation of ERß could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE: Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.


Assuntos
Catequina , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor beta de Estrogênio , Catequina/uso terapêutico , Rotenona/farmacologia , Neuroblastoma/tratamento farmacológico , Estrogênios/uso terapêutico , Modelos Animais de Doenças
20.
Brain Res Bull ; 201: 110726, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543296

RESUMO

BACKGROUND: Young onset Parkinson disease (YOPD) accounts for about 10% of PD patients, with the onset of symptoms between the ages of 21 and 40. At this age, the probability of pregnancy is high and there is a concern that the disease affects the fetuses. Therefore, in the present study, the effects of rotenone-induced PD on female mice as well as their fetuses and curcumin supplementation on the cerebral tissue of both female mice and their resulted fetuses were studied. METHODS: The rotenone was injected subcutaneously to induce PD model of female mice. The different concentrations of curcumin were administrated every day i.p. for 3 weeks and the rotarod test was done on day 1 and 19. Cell viability was measured by MTT test and apoptosis and necrosis of cells were evaluate using flow cytometry technique. After primer design, the expressions of bax, bcl-2, miR-211 and circRNA 0001518 genes were measured using RT-PCR technique. RESULTS: Curcumin administration were improved cerebral cell viability of both female PD mice and resulted fetuses by preventing cell apoptosis and necrosis. bax, miR-211 and circRNA 0001518 were downregulated and bcl-2 overexpressed in cerebral neurons of PD mice and their fetuses. CONCLUSION: PD induction in mice affects their fetal brain, and curcumin can partially reduce the negative effects of PD on fetal brain cells by overexpressing bcl-2 and decreasing bax expression genes.


Assuntos
Curcumina , MicroRNAs , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Feminino , Animais , Gravidez , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Rotenona/farmacologia , Proteína X Associada a bcl-2/metabolismo , RNA Circular , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Necrose , MicroRNAs/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA